Relative homology, higher cluster-tilting theory and categorified Auslander–Iyama correspondence

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Tilting Theory

Tilting theory provides a good method for comparing two categories, such as module categories of finite-dimensional algebras. For an introduction, see e.g. [A]. BGP reflection functors [BGP] give a way of comparing the representation categories of two quivers, where one is obtained from the other by reversing all of the arrows incident with a sink or source. Auslander, Platzeck and Reiten [APR]...

متن کامل

Tilting Theory and Cluster Algebras

The purpose of this chapter is to give an introduction to the theory of cluster categories and cluster-tilted algebras, with some background on the theory of cluster algebras, which motivated these topics. We will also discuss some of the interplay between cluster algebras on one side and cluster categories/cluster-tilted algebras on the other, as well as feedback from the latter theory to clus...

متن کامل

Tilting Theory and Cluster Combinatorics

We introduce a new category C, which we call the cluster category, obtained as a quotient of the bounded derived category D of the module category of a finite-dimensional hereditary algebra H over a field. We show that, in the simply-laced Dynkin case, C can be regarded as a natural model for the combinatorics of the corresponding Fomin–Zelevinsky cluster algebra. In this model, the tilting obj...

متن کامل

Cluster Tilting for Higher Auslander Algebras

The concept of cluster tilting gives a higher analogue of classical Auslander correspondence between representation-finite algebras and Auslander algebras. The n-Auslander-Reiten translation functor τn plays an important role in the study of n-cluster tilting subcategories. We study the category Mn of preinjective-like modules obtained by applying τn to injective modules repeatedly. We call a f...

متن کامل

Almost Complete Cluster Tilting Objects in Generalized Higher Cluster Categories

We study higher cluster tilting objects in generalized higher cluster categories arising from dg algebras of higher Calabi-Yau dimension. Taking advantage of silting mutations of Aihara-Iyama, we obtain a class of m-cluster tilting objects in generalized m-cluster categories. For generalized m-cluster categories arising from strongly (m + 2)-Calabi-Yau dg algebras, by using truncations of minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2015

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2015.07.024